(t)

## VALVE HEAD W9 TYPE B

ART. NO. 600047

## GENERAL

The KEOFITT CLASSIC W9 Sampling Valve is the original and leading sterilizable sampling valve in the world. Used in all industries for decades. +320 standard valve configurations. Unique serial no. for each valve ("E" = internal electro polish).
The sampling valve can be used for any process sampling for microbiological, chemical and/or physical analysis.

Cleaning/sterilizing: Between batches: Valve in open position: Cleanable by means of CIP using the detergent solution suitable for the actual process media (EHEDG certificate available). Between samples: Valve in its normal closed position: cleanable by CIP as "Between batches" or the valve may be sterilized by means of steam SIP (EHEDG test report available) or chemical SIP using a procedure appropriate to the actual circumstances. For further advice, please contact Keofitt. Not recommended for autoclave due to plastic parts.
Designed for sampling of liquids with a viscosity of up to approx. 1.000 cP containing no particles larger than $\emptyset 3 \mathrm{~mm}$. Sampling of more viscous liquids is possible, only will it take longer (depending on process pressure).

## FEATURES

Installation: Threaded connection
Operation: Turn knob - no spring (open left)

Depending on choice of valve body
Membrane: Silicone (QBF-65 - grey)

## CERTIFICATION*

- Conforms to 3-A • EHEDG CIP • EU 1935/2004


## TECHNICAL DATA

## Material (product contact)

$$
\text { - Membrane } \quad \text { Silicone (QBF-65 - grey) }
$$

## Material (without product contact)

| - Steel parts | AISI 303L (1.4305) |
| :--- | :--- |
| - Steel parts | AISI 316L (1.4404) |
| - Knob | HDPE (black) |

## Membrane

- Article
- Certification*

SILICONE, GREY (\# 600051) FDA. USP. EU 1935/2004

## Pressure \& Temperature

- Pressure
- Temperature
- Air supply

0-12 bar (g) / 0-174 psi (g) $1-130^{\circ} \mathrm{C} / 34-266^{\circ} \mathrm{F}$

## Net Weight

$0,238 \mathrm{~kg} / 0,524 \mathrm{lbs}$


## Spareparts

776041
PARTS FOR W9 HEAD 600041/42/43/47


|  |  |  | H O on | ${ }^{2 s_{\theta_{n / 3}}}{ }_{\Theta_{4} 0}$ | ${ }^{7 s_{e_{n / 3}}}{ }_{\Theta_{4} 0}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 <br> 0 <br> 0 <br> 8 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 |  |  | 0 <br> 8 <br> 0 <br> $\infty$ |  | ${ }^{7 s s_{m / 3}}{ }_{\theta_{4}}$ |  |
|  | $\begin{aligned} & E \\ & \stackrel{E}{2} \\ & \stackrel{0}{E} \\ & \frac{\pi}{0} \end{aligned}$ |  |  |  |  | H |
|  | 은 <br> $\frac{\pi}{2}$ <br> $\frac{\pi}{\Sigma}$ |  | $\infty$ 0 0 0 $\infty$ | $6 \varepsilon 0098$ | ${ }^{7 s_{\theta_{m}}}{ }_{\Theta_{4}}$ |  |
|  |  |  | $\circ$ <br> 0 <br> 0 <br> 0 |  | ${ }^{75} \mathrm{OH}_{\mathrm{m} \mathrm{O}_{4}}$ |  |
|  |  |  | $\infty$ 0 0 0 $\infty$ | ${ }^{7 s_{\theta_{n / 3}}}{ }_{\Theta_{4}}$ | ${ }^{2 s_{\theta_{n / 3}}}{ }_{0_{4} O}$ |  |
| se!poq ริu!pIoM | 00 $\frac{0}{ㅎ}$ 30 3 0 $\frac{20}{2}$ |  | İ O- in | ${ }^{2 s s_{m / J_{\Theta_{4}}}}$ |  | a 0 0 0 $\infty$ |
|  | 20 $\frac{0}{ㅎ}$ 3 3 0 $\frac{20}{2}$ |  | $\begin{aligned} & \text { 김 } \\ & 0 \\ & 0 \\ & \infty \end{aligned}$ |  |  | 0 <br> 8 <br> 0 <br> 0 |
|  |  |  | -1 <br> $\mathbf{O}$ <br> 0 <br> $\infty$ | $\circ$ <br> 0 <br> 0 <br> 0 |  | - |
|  |  | əэə!d sosoh |  | due\|o !uıw | S'tx9tw pearui |  |
| SGVEH 6 M |  |  |  |  |  |  |

